167 research outputs found

    On Ergodic Secrecy Capacity for Gaussian MISO Wiretap Channels

    Full text link
    A Gaussian multiple-input single-output (MISO) wiretap channel model is considered, where there exists a transmitter equipped with multiple antennas, a legitimate receiver and an eavesdropper each equipped with a single antenna. We study the problem of finding the optimal input covariance that achieves ergodic secrecy capacity subject to a power constraint where only statistical information about the eavesdropper channel is available at the transmitter. This is a non-convex optimization problem that is in general difficult to solve. Existing results address the case in which the eavesdropper or/and legitimate channels have independent and identically distributed Gaussian entries with zero-mean and unit-variance, i.e., the channels have trivial covariances. This paper addresses the general case where eavesdropper and legitimate channels have nontrivial covariances. A set of equations describing the optimal input covariance matrix are proposed along with an algorithm to obtain the solution. Based on this framework, we show that when full information on the legitimate channel is available to the transmitter, the optimal input covariance has always rank one. We also show that when only statistical information on the legitimate channel is available to the transmitter, the legitimate channel has some general non-trivial covariance, and the eavesdropper channel has trivial covariance, the optimal input covariance has the same eigenvectors as the legitimate channel covariance. Numerical results are presented to illustrate the algorithm.Comment: 27 pages, 10 figure

    On the Coherence Properties of Random Euclidean Distance Matrices

    Full text link
    In the present paper we focus on the coherence properties of general random Euclidean distance matrices, which are very closely related to the respective matrix completion problem. This problem is of great interest in several applications such as node localization in sensor networks with limited connectivity. Our results can directly provide the sufficient conditions under which an EDM can be successfully recovered with high probability from a limited number of measurements.Comment: 5 pages, SPAWC 201

    Matrix Completion in Colocated MIMO Radar: Recoverability, Bounds & Theoretical Guarantees

    Full text link
    It was recently shown that low rank matrix completion theory can be employed for designing new sampling schemes in the context of MIMO radars, which can lead to the reduction of the high volume of data typically required for accurate target detection and estimation. Employing random samplers at each reception antenna, a partially observed version of the received data matrix is formulated at the fusion center, which, under certain conditions, can be recovered using convex optimization. This paper presents the theoretical analysis regarding the performance of matrix completion in colocated MIMO radar systems, exploiting the particular structure of the data matrix. Both Uniform Linear Arrays (ULAs) and arbitrary 2-dimensional arrays are considered for transmission and reception. Especially for the ULA case, under some mild assumptions on the directions of arrival of the targets, it is explicitly shown that the coherence of the data matrix is both asymptotically and approximately optimal with respect to the number of antennas of the arrays involved and further, the data matrix is recoverable using a subset of its entries with minimal cardinality. Sufficient conditions guaranteeing low matrix coherence and consequently satisfactory matrix completion performance are also presented, including the arbitrary 2-dimensional array case.Comment: 19 pages, 7 figures, under review in Transactions on Signal Processing (2013
    • …
    corecore